
Characterization of nanoscale property variations in polymer 
composite systems:  Part 2 - Numerical Modeling 

T. A. Bogetti†, T. Wang‡, M. R. VanLandingham‡ and J. W. Gillespie, Jr.‡ 
† United States Army Research Laboratory, USA 
‡ Center for Composite Materials, University of Delaware 
 
ABSTRACT 

In Part 1 of the companion paper, a technique utilizing the indenting capabilities 

of the atomic force microscope (AFM) was used to evaluate the local changes in material 

response of polymer composite systems near the fiber-matrix interface.  Responses for 

two model composite systems at both room temperature and elevated temperatures were 

studied.  In Part 2, we compare the AFM indentation results to finite element model 

predictions to gain a fundamental understanding of the influence that the interphase 

properties have on the measured responses.  Good agreement between the finite element 

model predictions and the AFM measured results was found for all cases studied.  The 

finite element results confirmed that the interphase region for an unsized graphite fiber is 

too small (relative to the physical size of the indentation probe) to conduct realistic 

characterization.   It was shown, however, that the sized fiber case has an interphase 

region sufficiently large to obtain useful measurements. The finite element model was 

then used to identify the effects of interphase region size on the potential usefulness of 

AFM indentation as a viable interphase characterization method. 
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INTRODUCTION 

The fiber-matrix interphase plays a critical role in the behavior and performance 

of fiber-reinforced composite systems.  A great deal of effort has been put forth 

conducting analytical and numerical modeling studies of the hygrothermo-mechanical 

behavior of interphase phenomena [1-5].  The majority of these studies can be 

categorized into either of two areas: (1) interphase effects on the development of micro-

level residual stress and strain states or (2) relating microstructural details of the 

interphase can be related to the macroscopic performance characteristics of the composite 

material system.  In all interphase modeling efforts, reliable property input is critical to 

accurate model predictions.  The primary motivation for this work is therefore to add 

confidence to the interpretation of experimental findings discussed in Part 1 and help to 

more accurately define property gradients in interphase regions.  In addition, the 

interphase models presented here are used to gain insight into the usefulness and 

limitations of AFM indentation as a viable and accurate direct interphase characterization 

method. 

Recently, researchers have made some unique discoveries concerning the 

development of property gradients near the fiber-matrix interface [6-10].  In these 

studies, thermodynamic and kinetic models have been used to predict gradients in the 

amine distribution caused by the presence of the fiber surface. The predicted 

concentration gradients were linked to property gradients through theoretical 

relationships between stoichiometry and properties of the epoxy matrix.  Using properties 

measured for unreinforced epoxy samples of different epoxy-amine ratios, the 



stoichiometry profiles predicted were mapped point by point into interphase property 

gradients (modulus and glass transition temperature, Tg).  The interphase characteristics 

predicted by this method were significantly different from previous models in terms of 

both the property gradient profiles and the absolute size of the interphase.  For example, 

the thickness of the interphase of an unsized fiber was found to be extremely small, less 

than 0.1% of the fiber radius, which is nearly an order of magnitude smaller than what 

was previously assumed. 

In this work, a unique finite element model is developed which incorporates the 

interphase property gradients determined by McCullough, et al. [6-10].  The model 

predictions of the AFM indentation response in the interphase of an unsized carbon fiber 

and a sized copper fiber are compared with the experimental findings of Part 1.  Both 

room-temperature and elevated-temperature conditions are investigated.  In the Analysis 

section, the numerical model details are presented.  Property input as well as model 

boundary conditions are discussed.  In the Results and Discussion section, model 

convergence characteristics and direct correlation between model predictions and 

measured results are presented and discussed.  The significance of the results with respect 

to the confirmation of realistic property gradients in the interphase and the viability of 

AFM indentation as an accurate and direct interphase characterization method are also 

discussed. 

 

ANALYSIS 



Model Configurations 

Two interphase case studies are investigated, an unsized carbon fiber and an 

epoxy-coated  (or sized) copper fiber.  The physical model of the unsized carbon fiber is 

represented with a three-phase concentric cylinder configuration as shown in Figure 1a.  

The fiber is an unsized AS4 fiber and the matrix is an epoxy with a 28 pph (parts per 

hundred) PACM 20/Epon 828 stoichiometric mixture. The indicated fiber and matrix 

regions are assumed to possess uniform properties.  The carbon fiber is assumed to be 

transversely isotropic, while the matrix and interphase regions are assumed to be 

isotropic.  The property gradients employed in the interphase region are described in the 

following subsection. 

The physical model of the coated copper fiber is represented with the five-phase 

concentric cylinder configuration shown in Figure 1b.  The same epoxy matrix is used, 

and the coating is an Epon 1001F epoxy.  The indicated fiber, coating, and matrix regions 

are assumed to possess uniform properties. All the indicated regions are assumed to be 

isotropic.  The property gradients employed in the first and second interphase region are 

described in the following section. 

The constant linear-elastic material properties used in the finite element analysis 

are summarized in Table 1 for both model configurations.  The radial thickness of the 

interphase used in the unsized carbon fiber configuration is 3 nm.  The radial thicknesses 

of the first and second interphases in the coated copper fiber configuration are 3 and 1500 

nm, respectively.  The coating thickness on the copper fiber is 8000 nm. 



Interphase Property Gradients 

The relationships between amine content (measured in pph) and the epoxy 

modulus and glass transition temperature (Tg) are presented in Figure 2 for the epoxy 

system considered in this investigation [6,7].  The amine gradient in the unsized carbon 

fiber interphase has also been found to vary according to that indicated in Figure 3 [9,10].  

A direct mapping of the modulus and Tg dependence on amine content onto the actual 

amine gradient profile gives the property gradients for modulus and Tg in the unsized 

carbon fiber interphase region as shown in Figure 4.  These are the actual property values 

used in the finite element model for the unsized carbon fiber configuration. 

Property gradients in the first interphase region of the coated copper fiber 

configuration are assumed identical to those in the unsized carbon fiber configuration [9].  

The second interphase between the coating and matrix is much thicker.  A linear gradient 

of amine content is assumed between the coating material (Epon 1001F) and the bulk 

matrix material (Epon 828), which is based on the results of the diffusion-reaction 

kinetics model presented in Figure 11 of the companion paper.  This amine gradient is 

plotted in Figure 5, and the corresponding modulus and Tg gradients are shown in Figure 

6. 

Effects of Glass Transition and Elevated Temperatures 

At temperatures above the Tg, the matrix material changes from a glassy solid to a 

rubbery, viscoelastic material.  In our treatment of Tg gradients and elevated temperature 

effects, the modulus profiles within the interphase are subject to modification to reflect 

this softening behavior.  Specifically, for regions within the model where the elevated 



temperature exceeds the local Tg, the modulus is arbitrary reduced by 80% of the room-

temperature value to simulate the loss of material stiffness at elevated temperatures. 

Finite Element Models 

Finite element representations of the physical models (See Figure 1) incorporating 

the interphase property gradients were constructed.  The physical nature of the 

indentation experiment lacks convenient symmetry which might otherwise permit the 

used of two-dimensional axisymmetric elements. A fully three-dimensional model is 

therefore used to simulate the indentation experiment. Finite element models are 

generated with PATRAN [11], and the numerical solver employed is ABAQUS [12].  

The element used in this analysis is an 8-noded three-dimensional solid element 

designated C3D8 in the ABAQUS manual. The number of elements needed to yield 

converged solutions for the interphase finite element models presented in this study 

typically ranged between 5000 and 10000. 

A representative finite element mesh of the indentation experiment is shown in 

Figure 7 for the coated copper fiber configuration.  Note that half-space symmetry is used 

to reduce the total number of elements in the model.  The indentation experiment is 

simulated by successively applying a single unit point load (P) in the axial direction (see 

Figure 7) to each node along the representative surface line (AB in Figure 7) of the model 

and monitoring the resulting nodal deflections.  Note that mesh densities are increased in 

the interphase regions and along the line of point load application (AB), where material 

gradients are defined and large stress gradients are expected. 

The global model boundary conditions used are as follows:  (1) the displacements 

perpendicular to the half-plane of symmetry are constrained in the circumferential 



direction (δy=0, see Figure 7); (2) the axial z-direction displacements are constrained 

(δz=0) on the bottom portion of the model; and (3) the radial x-direction displacement is 

constrained (δx=0) at the bottom of the fiber center (point O in Figure 7). 

Property gradients within the interphase regions are conveniently defined in the 

ABAQUS code through the use of a user-defined UMAT FORTRAN subroutine.  Within 

the UMAT subroutine, the spatial position of each integration point is uniquely defined 

according to the property gradients defined in the previous sections.   At elevated 

temperatures, the modulus reduction procedure described previously was enforced in 

portions of the model where temperatures exceed the local Tg of the material. 

  

RESULTS AND DISCUSSION 

Data Reduction 

Results from the indentation experiments and finite element model predictions are 

presented in terms of a normalized stiffness.  Basically, the stiffness at a point is 

calculated as the applied load divided by the nodal deflection.  This stiffness is then 

normalized by a stiffness calculated for the exact same finite element model and node 

except with uniform bulk matrix properties assigned to the entire model.  Following this 

procedure, normalized stiffnesses will approach unity far removed from the fiber. 

Convergence Study 

Application of the point load at a node requires special consideration, since the 

exact elastic solution for the deflection is infinite.  The approach of using a distributed 

load on the element surface was attempted but not successful due to mesh sensitivity 

effects on the predicted deflections.  Because of the singularity at the point load, a special 



normalization method was developed.  This normalization method, described below, was 

useful in eliminating mesh sensitivity effects from the finite element predictions. 

In elasticity theory [13], the displacement at a concentrated load on a half space is 

given by 
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where d is the displacement, P is the concentration load, E is the modulus of the material, 

υ is the Poisson’s ratio, and r is the radius of the circle to which the concentrated load is 

applied, (r=0 is a point load).  Note that as the radius tends to zero, the displacement 

tends to infinity. 

The ratio of the displacements of two different materials with the same 

concentrated load (and the same Poisson’s ratio) has a finite value equal to the inverse 

ratio of their respective moduli, as shown in the following expression: 
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Using models with uniform mesh densities and uniform properties the 

relationship between element size and nodal displacement at the point load was studied.  

The following simple relationship between element size, Le, and node displacement, d , 

for a unit point load is assumed: 

eEL
APd =                                                                    (3) 

where P is the concentrated load, E is the modulus of the material, and A is an arbitrary 

constant.  Equation 3 was fit to the finite element results for five different element sizes 



and two different materials.  As can be seen in Figure 8, Equation 3 is shown to be an 

excellent fit for the finite element results.  Accordingly, the ratio of displacements of two 

different materials (same mesh density and applied unit load) can be expressed as 
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Comparing Equations 2 and 4, we can write 
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Thus, the ratio of the finite element displacements will converge to the same ratio as that 

based on the elasticity solution.  Further, from Equations 4 and 5, the ratio of finite 

element displacements will converge to the inverse of the respective material moduli: 
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Note also that Equation 6 holds true only if the same mesh and applied load are used for 

each displacement calculation. 

This result is important in that it justifies the stiffness normalization procedure.  

For each mesh, the nodal displacement calculation is made twice; (1) using constant bulk 

matrix material properties everywhere within the finite element model; and (2) using 

fiber and matrix properties along with interphase property gradients. 

A mesh convergence study was conducted to verify that sufficient mesh density is 

obtained for reliable normalized stiffness profile calculations.  The unsized carbon fiber 

interphase configuration at room temperature was modeled using meshes with 5000, 

10000, and 15000 elements.  The results are shown in Figure 9 and show sufficient mesh 



density even at 5000 elements.  It is noted that the coated copper fiber interphase 

configuration required significantly more elements (nearly 10000). 

Unsized Carbon Fiber Model Results 

Predicted finite element normalized stiffness profiles for the unsized carbon fiber 

interphase configuration at 20°C, 80°C, and 120°C are shown in Figure 10. 

The increased softening effect on the normalized stiffness with increasing elevated 

temperature is shown.  For all temperatures, the normalized stiffness approaches unity at 

0.004 µm (slightly larger than the interphase size of 0.003 µm).  The significance of this 

result is that the AFM indentor is larger than the region affected by the interphase 

property gradients and therefore is not capable of characterization in such a small 

interphase region.  The normalized stiffness profile for 20°C can be compared with actual 

AFM measurements shown in Figure 3 of  the companion paper.  The AFM 

measurements, however, can be measured only at distances far removed from the fiber 

surface (e.g., 0.05 µm). 

 

 

Coated Copper Fiber Model Results 

Predicted finite element normalized stiffness profiles for the coated copper fiber 

interphase configuration at 20°C, 80°C, and 120°C are shown in Figures 11, 12, and 13, 

respectively.  In each figure, the associated AFM indentation responses are plotted for 

comparison.  The qualitative agreement between the radial locations of normalized 

stiffness changes of the respective temperature conditions supports our assumptions made 

about the interphase gradients. 



Reasonably good agreement is seen for each temperature condition except in the 

region of the second interphase, where the finite element models predict a more 

compliant indentation response than the AFM results.  Quantitative agreement in this 

region is not necessarily expected due to complex material and geometric interactions 

between the indentor and the interphase material as its Tg is approached.  In addition, the 

actual modulus reduction profile will not be discontinuous as the finite element profile 

was assumed. 

Note also that the significantly greater thicknesses of the second interphase region 

(compared with the first interphase region) enable AFM indentation to be useful as an 

interphase characterization method. 

Interphase Size Effects on Measurable Indentation Response 

The unsized carbon fiber interphase region (0.003 µm thick) proved to be too 

small for AFM characterization.  The lateral resolution of the AFM indentor is 

approximately 0.05 µm and consequently, a much larger interphase region would have to 

exist for modulus profile characterization to be conducted.  Parametric studies were 

performed to investigate the effects of interphase thickness on indentation response 

measurements.  Interphase thicknesses of 0.004 µm, 0.1 µm, and 0.2 µm were 

investigated, and the corresponding normalized stiffness profiles are shown in Figure 14.  

The modulus gradient profiles for these cases were generated assuming values 

proportional to the unsized carbon fiber interphase configuration.  Indentation response 

predictions for these cases were also conducted at an elevated temperature condition of 

120°C, shown in Figure 15. 



The results demonstrate that while the AFM is not useful for characterization of 

extremely small interphases, it is useful for characterization of interphase regions within 

its measuring sensitivity (0.05 µm).  The carbon/epoxy system studied in this work might 

exhibit a small interphase size as compared with other fiber/matrix systems.  

Consequently, the AFM has the potential to be used to characterize other systems with 

thicker interphases. 

 

CONCLUSIONS 

Three-dimensional finite element models of an unsized carbon fiber/epoxy system 

and a coated copper fiber/epoxy system were constructed.  Realistic interphase property 

gradients were employed in the models, and indentation response predictions were 

compared with actual AFM indentation measurements to gain a fundamental 

understanding of the influence the interphase properties have on the measured responses.  

The effects of Tg and elevated temperature were included in the study.  Good agreement 

between the finite element model predictions and the AFM measured results were found 

for all cases studied.  The finite element results confirmed that the interphase region in 

the unsized fiber is too small (as compared to the physical size of the indentation probe) 

to conduct realistic characterization.   However, the sized fiber case involves an 

interphase region sufficiently large to obtain useful measurements. The finite element 

model was further used to identify the effects of interphase region size on the potential 

usefulness of AFM indentation as a viable interphase characterization method. 
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Table 1. Uniform fiber and matrix properties 
 
 

AS4 Fiber Copper Fiber Coating Bulk Matrix 
E11=241  Gpa 
E22=21    Gpa 
E33=21    Gpa 
G12=96.4 Gpa 
G13=96.4 Gpa 
G23=8.4   Gpa 

ν12=0.25 
ν23=0.25 
ν13=0.25 

E=120      Gpa
ν=0.25 
 

E=3.1      Gpa 
ν=0.35 
 

E=2.3        Gpa 
ν=0.35 
Tg=160 
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Figure 1a. Schematic model of the unsized carbon fiber configuration 
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Figure 1b. Schematic model of the coated copper fiber configuration 
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Figure 2. Modulus and Tg dependence on pph amine content 
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Figure 3. Amine gradient in the interphase of the unsized carbon fiber configuration 
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Figure 4. Modulus and Tg gradients in the interphase of the unsized carbon fiber 
configuration 
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Figure 5. Amine gradient of the coated copper fiber in the coating-matrix interphase 
region 
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Figure 6. Modulus and Tg gradients in the interphase of the coated copper fiber 
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Figure 7. Representative mesh refinement of the finite element model (the coated copper 
fiber configuration) 
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Figure 8. Displacement correlation between analytic fit and numerical results 
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Figure 9. Mesh convergence study for the finite element model 
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Figure 10. Predicted indentation response of the unsized carbon fiber configuration at 
20°C, 80°C, and 120°C 
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Figure 11. Correlation of the indentation response of the coated copper fiber 
configuration at 20oC 
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Figure 12. Correlation of the indentation response of the coated copper fiber 
configuration at 80oC 
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Figure 13. Correlation of the indentation response of the coated copper fiber 
configuration at 120oC 
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Figure 14. Finite element predictions of the indentation response for various interphase 
sizes at 20°C 
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Figure 15. Finite element predictions of the indentation response for various interphase 
sizes at 120°C 
 
 
 
 
 
 


	Model Configurations
	Interphase Property Gradients
	Effects of Glass Transition and Elevated Temperatures
	Finite Element Models
	
	RESULTS AND DISCUSSION


	Data Reduction
	Convergence Study
	Unsized Carbon Fiber Model Results
	Coated Copper Fiber Model Results
	Interphase Size Effects on Measurable Indentation Response

